Karim MN, Singh M, Bian P, Zheng R, Dekiwadia C, Ahmed T, Walia S, Gaspera ED, Singh S,
Ramanathan R, Bansal V (2018) Visible light triggered reactive oxygen species mediated
antibacterial activity of peroxidase mimic CuO nanorods. ACS Appl Nano Mater 1:1694–1704
Kim JS, Kuk E, Yu KN, Kim JH, Park SJ, Lee HJ, Kim SH, Park YK, Park YH, Hwang CY, Kim
YK (2007) Antimicrobial effects of silver nanoparticles. Nanomedicine 3(1):95–101
Korshed P, Li L, Liu Z, Wang T (2016) The molecular mechanisms of the antibacterial effect of
picosecond laser generated silver nanoparticles and their toxicity to human cells. PLoS One
11(8):0160078
Kruk T, Szczepanowicz K, Stefańska J, Socha RP, Warszyński P (2015) Synthesis and antimicro-
bial activity of monodisperse copper nanoparticles. Colloids Surf B: Biointerfaces 128:17–22
Kumar S, Ojha AK, Bhorolua D, Das J, Kumar A, Hazarika A (2019) Facile synthesis of CuO
nanowires and Cu2O nanospheres grown on rGO surface and exploiting its photocatalytic,
antibacterial and supercapacitive properties. Phys B Condens Matter 558:74–81
Lakshmi Prasanna V, Vijayaraghavan R (2015) Insight into the mechanism of antibacterial activity
of ZnO: surface defects mediated reactive oxygen species even in the dark. Langmuir 31(33):
9155–9162
Lara HH, Guisbiers G, Mendoza J, Mimun LC, Vincent BA, Lopez-Ribot JL, Nash KL (2018)
Synergistic antifungal effect of chitosan-stabilized selenium nanoparticles synthesized by
pulsed laser ablation in liquids against Candida albicans biofilms. Int J Nanomedicine 13:2697
Lee C, Kim JY, Lee WI, Nelson KL, Yoon J, Sedlak DL (2008) Bactericidal effect of zero-valent
iron nanoparticles on Escherichia coli. Environ Sci Technol 42(13):4927–4933
Leung YH, Ng AM, Xu X, Shen Z, Gethings LA, Wong MT, Chan CM, Guo MY, Ng YH, Djurišić
AB, Lee PK (2014) Mechanisms of antibacterial activity of MgO: non-ROS mediated toxicity of
MgO nanoparticles towards Escherichia coli. Small 10(6):1171–1183
Li WR, Xie XB, Shi QS, Zeng HY, You-Sheng OY, Chen YB (2010) Antibacterial activity and
mechanism of silver nanoparticles on Escherichia coli. Appl Microbiol Biotechnol 85(4):
1115–1122
Li M, Zhu L, Lin D (2011) Toxicity of ZnO nanoparticles to Escherichia coli: mechanism and the
influence of medium components. Environ Sci Technol 45(5):1977–1983
Li Y, Zhang W, Niu J, Chen Y (2012) Mechanism of photogenerated reactive oxygen species and
correlation with the antibacterial properties of engineered metal-oxide nanoparticles. ACS Nano
6(6):5164–5173
Li Y, Zhen J, Tian Q, Shen C, Zhang L, Yang K, Shang L (2020) One step synthesis of positively
charged gold nanoclusters as effective antimicrobial nanoagents against multidrug-resistant
bacteria and biofilms. J Colloid Interface Sci 569:235–243
Lin ZH, Lee CH, Chang HY, Chang HT (2012) Antibacterial activities of tellurium nanomaterials.
Chem Asian J 7(5):930–934
Lipovsky A, Tzitrinovich Z, Friedmann H, Applerot G, Gedanken A, Lubart R (2009) EPR study of
visible light-induced ROS generation by nanoparticles of ZnO. J Phys Chem C 113(36):
15997–16001
Liu P, Duan W, Wang Q, Li X (2010) The damage of outer membrane of Escherichia coli in the
presence of TiO2 combined with UV light. Colloids Surf B: Biointerfaces 78(2):171–176
Liu B, Mu L, Han B, Zhang J, Shi H (2017) Fabrication of TiO2/Ag2O heterostructure with
enhanced photocatalytic and antibacterial activities under visible light irradiation. Appl Surf
Sci 396:1596–1603
Lv Q, Zhang B, Xing X, Zhao Y, Cai R, Wang W, Gu Q (2018) Biosynthesis of copper
nanoparticles using Shewanella loihica PV-4 with antibacterial activity: novel approach and
mechanisms investigation. J Hazard Mater 347:141–149
Matsunaga T, Tomoda R, Nakajima T, Wake H (1985) Photoelectrochemical sterilization of
microbial cells by semiconductor powders. FEMS Microbiol Lett 29(1–2):211–214
Mazurkova NA, Spitsyna YE, Shikina NV, Ismagilov ZR, Zagrebel’nyi SN, Ryabchikova EI
(2010) Interaction of titanium dioxide nanoparticles with influenza virus. Nanotechnol Russ
5(5–6):417–420
518
M. Chauhan et al.