Karim MN, Singh M, Bian P, Zheng R, Dekiwadia C, Ahmed T, Walia S, Gaspera ED, Singh S,

Ramanathan R, Bansal V (2018) Visible light triggered reactive oxygen species mediated

antibacterial activity of peroxidase mimic CuO nanorods. ACS Appl Nano Mater 1:16941704

Kim JS, Kuk E, Yu KN, Kim JH, Park SJ, Lee HJ, Kim SH, Park YK, Park YH, Hwang CY, Kim

YK (2007) Antimicrobial effects of silver nanoparticles. Nanomedicine 3(1):95101

Korshed P, Li L, Liu Z, Wang T (2016) The molecular mechanisms of the antibacterial effect of

picosecond laser generated silver nanoparticles and their toxicity to human cells. PLoS One

11(8):0160078

Kruk T, Szczepanowicz K, Stefańska J, Socha RP, Warszyński P (2015) Synthesis and antimicro-

bial activity of monodisperse copper nanoparticles. Colloids Surf B: Biointerfaces 128:1722

Kumar S, Ojha AK, Bhorolua D, Das J, Kumar A, Hazarika A (2019) Facile synthesis of CuO

nanowires and Cu2O nanospheres grown on rGO surface and exploiting its photocatalytic,

antibacterial and supercapacitive properties. Phys B Condens Matter 558:7481

Lakshmi Prasanna V, Vijayaraghavan R (2015) Insight into the mechanism of antibacterial activity

of ZnO: surface defects mediated reactive oxygen species even in the dark. Langmuir 31(33):

91559162

Lara HH, Guisbiers G, Mendoza J, Mimun LC, Vincent BA, Lopez-Ribot JL, Nash KL (2018)

Synergistic antifungal effect of chitosan-stabilized selenium nanoparticles synthesized by

pulsed laser ablation in liquids against Candida albicans biolms. Int J Nanomedicine 13:2697

Lee C, Kim JY, Lee WI, Nelson KL, Yoon J, Sedlak DL (2008) Bactericidal effect of zero-valent

iron nanoparticles on Escherichia coli. Environ Sci Technol 42(13):49274933

Leung YH, Ng AM, Xu X, Shen Z, Gethings LA, Wong MT, Chan CM, Guo MY, Ng YH, Djurišić

AB, Lee PK (2014) Mechanisms of antibacterial activity of MgO: non-ROS mediated toxicity of

MgO nanoparticles towards Escherichia coli. Small 10(6):11711183

Li WR, Xie XB, Shi QS, Zeng HY, You-Sheng OY, Chen YB (2010) Antibacterial activity and

mechanism of silver nanoparticles on Escherichia coli. Appl Microbiol Biotechnol 85(4):

11151122

Li M, Zhu L, Lin D (2011) Toxicity of ZnO nanoparticles to Escherichia coli: mechanism and the

inuence of medium components. Environ Sci Technol 45(5):19771983

Li Y, Zhang W, Niu J, Chen Y (2012) Mechanism of photogenerated reactive oxygen species and

correlation with the antibacterial properties of engineered metal-oxide nanoparticles. ACS Nano

6(6):51645173

Li Y, Zhen J, Tian Q, Shen C, Zhang L, Yang K, Shang L (2020) One step synthesis of positively

charged gold nanoclusters as effective antimicrobial nanoagents against multidrug-resistant

bacteria and biolms. J Colloid Interface Sci 569:235243

Lin ZH, Lee CH, Chang HY, Chang HT (2012) Antibacterial activities of tellurium nanomaterials.

Chem Asian J 7(5):930934

Lipovsky A, Tzitrinovich Z, Friedmann H, Applerot G, Gedanken A, Lubart R (2009) EPR study of

visible light-induced ROS generation by nanoparticles of ZnO. J Phys Chem C 113(36):

1599716001

Liu P, Duan W, Wang Q, Li X (2010) The damage of outer membrane of Escherichia coli in the

presence of TiO2 combined with UV light. Colloids Surf B: Biointerfaces 78(2):171176

Liu B, Mu L, Han B, Zhang J, Shi H (2017) Fabrication of TiO2/Ag2O heterostructure with

enhanced photocatalytic and antibacterial activities under visible light irradiation. Appl Surf

Sci 396:15961603

Lv Q, Zhang B, Xing X, Zhao Y, Cai R, Wang W, Gu Q (2018) Biosynthesis of copper

nanoparticles using Shewanella loihica PV-4 with antibacterial activity: novel approach and

mechanisms investigation. J Hazard Mater 347:141149

Matsunaga T, Tomoda R, Nakajima T, Wake H (1985) Photoelectrochemical sterilization of

microbial cells by semiconductor powders. FEMS Microbiol Lett 29(12):211214

Mazurkova NA, Spitsyna YE, Shikina NV, Ismagilov ZR, Zagrebelnyi SN, Ryabchikova EI

(2010) Interaction of titanium dioxide nanoparticles with inuenza virus. Nanotechnol Russ

5(56):417420

518

M. Chauhan et al.